ndpyramid.pyramid_resample#
- ndpyramid.pyramid_resample(ds: Dataset, *, x: str, y: str, projection: Literal['web-mercator', 'equidistant-cylindrical'] = 'web-mercator', levels: int | None = None, pixels_per_tile: int = 128, other_chunks: dict | None = None, resampling: Literal['bilinear', 'nearest'] | dict = 'bilinear', clear_attrs: bool = False) DataTree #
Create a multiscale pyramid of a dataset via resampling.
Parameters#
- dsxarray.Dataset
The dataset to create a multiscale pyramid of.
- ystring
name of the variable to use as
y
axis of the CF area definition- xstring
name of the variable to use as
x
axis of the CF area definition- projectionstr, optional
The projection to use. Default is
web-mercator
.- levelsint, optional
The number of levels to create. If None, the number of levels is determined by the number of tiles in the dataset.
- pixels_per_tileint, optional
Number of pixels per tile, by default 128
- other_chunksdict
Chunks for non-spatial dims to pass to
chunk()
. Default is None- resamplingstr or dict, optional
Pyresample resampling method to use (
bilinear
ornearest
). Default isbilinear
. If a dict, keys are variable names and values are resampling methods.- clear_attrsbool, False
Clear the attributes of the DataArrays within the multiscale pyramid. Default is False.
Returns#
- dt.DataTree
The multiscale pyramid.
Warnings#
Pyresample expects longitude ranges between -180 - 180 degrees and latitude ranges between -90 and 90 degrees.
3-D datasets are expected to have a dimension order of
(time, y, x)
.
Ndpyramid
andpyresample
do not check the validity of these assumptions to improve performance.